

UNIVERSITA' "MEDITERRANEA" DI REGGIO CALABRIA LAUREA MAGISTRALE IN INGEGNERIA CIVILE

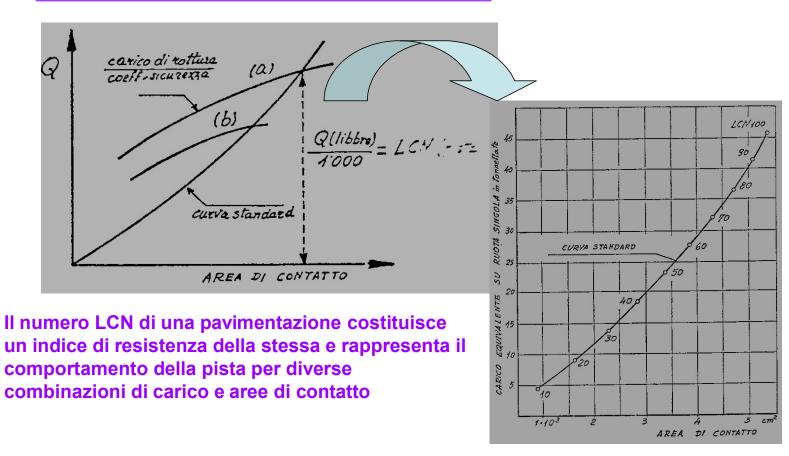
CORSO DI

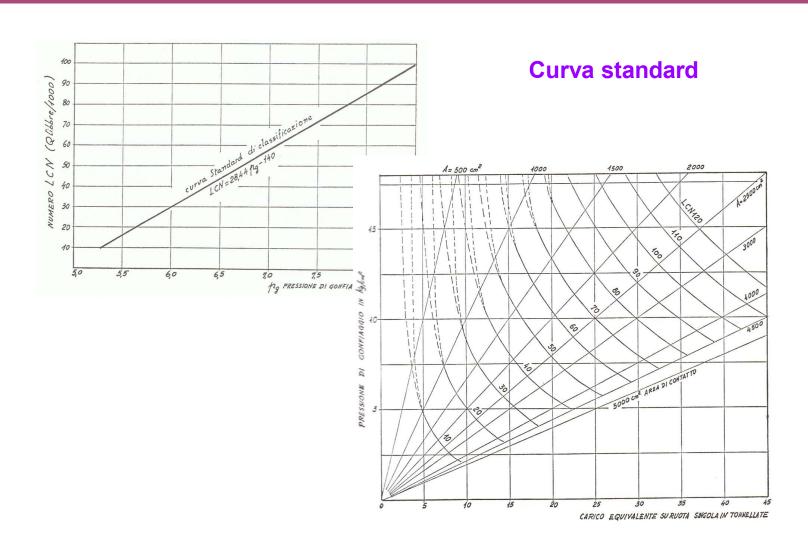
INFRASTRUTTURE AEROPORTUALI ED ELIPORTUALI

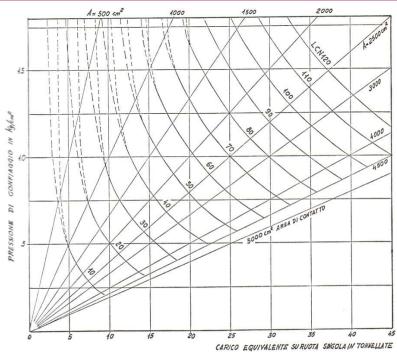
LECTURE 12 CRITERI DI VALUTAZIONE DELL'AGIBILITA' DELLE PISTE

Docente: Prof. Ing. Marinella GIUNTA

AGIBILITA' DELLE PISTE DI VOLO


Valutare l'agibilità di una pista significa verificarne l'attitudine ad accogliere un dato tipo di aereo e/o individuare le condizioni limite nelle quali quest'ultimo può usufruire delle infrastrutture.


METODI DI VALUTAZIONE DELL' AGIBILITA'


- METODO LCN (Load Classification Number)
- METODO ACN-PCN (Aircraft Classification Number /Pavement Classification Number)

Secondo questo metodo si determina il valore di LCN (Load Classification Number) della pavimentazione e si confronta con il valore di LCN dell' aereo.

Determinazione numero LCN della pavimentazione

Sfruttando tale diagramma il numero LCN della pista può essere determinato in base ad una coppia di valori (A, Q) relativa ai risultati delle prove di carico. Q è IL CARICO DI SICUREZZA

Le norma ICAO fissano che:

PER PAVIMENTAZIONI RIGIDE Q è il rapporto tra carico di rottura e coefficiente di sicurezza posto pari a 1,5.

PER PAVIMENTAZIONI FLESSIBILI Q è il carico che produce una freccia di 5 mm dopo 10.000 ripetizioni

			Numero LCN									
izione	Tipo di aereo	Peso totale	Pressione di gonfiuggio (MPa)	Pav. rigide			Pavimentazioni flessibili					
Disposizione ruote				I (cm)			spessore totale s _t (cm)					
		(t)		76	89	102	25	38	51	64	76	102
	Boeing 707-320	135,30	1,13	60	67	73	59	65	70	76	81	92
		114,90		51	57	62	49	55	60	66	71	81
		94,40		41	47	52	38	44	50	55	60	69
		74,00		32	36	40	30	35	40	44	48	56
		81,70	0,99	42	46	49	37	44	51	55	59	67
Ruote doppio tandem	Britannia 300	72,60		38	41	44	33	39	46	50	53	60
		63,60		33	36	38	28	34	40	44	47	53
		54,50		29	31	32	23	29	34	38	41	47
	Caravelle	45,40	0,87	27	29	30	29	33	37	39	41	44
		40,90		24	26	28	25	29	33	35	37	41
		31,80		17	18	20	18	22	25	27	28	32
ldop	Comet IV B	71,70	1,06	46	49	51	43	49	55	59	62	68
Suote		62,70		39	42	44	37	42	48	51	54	60
		53,60		32	35	37	30	35	40	43	46	52
	Convair 880	84,00	1,04	51	54	56	51	60	69	75	81	92
		74,90		45	48	51	45	54	62	68	73	84
		65,80		39	43	46	39	47	54	60	65	76
		56,80		33	37	40	32	40	47	53	58	68
	DC-8 Intercontinental	140,70	1,10	66	74	81	62	71	80	86	91	102
		118,00		57	63	68	52	61	69	75	80	90
		95,30		48	52	55	42	50	57	63	68	78
		72,60		39	41	43	32	39	46	51	55	64

LCN di alcuni aerei in funzione del raggio di rigidezza per pavimentazioni rigide e dello spessore totale per pavimentazioni flessibili

$$l = 4 \sqrt{\frac{Es^3}{12(1-\mu^2)K}}$$

CRITERI DI UTILIZZAZIONE

1,10 LCN pista <LCN aereo < 1,25 LCN pista

Si possono ammettere fino a 3000 movimenti

1,25 LCN pista <LCN aereo < 1,50 LCN pista

Si possono ammettere fino a 300 movimenti, leggeri danni alla pavimentazione

1,50 LCN pista <LCN aereo < 2,00 LCN pista

Numero minimo di movimenti

LCN aereo > 2,00 LCN pista

E' ammessa l'utilizzazione solo in casi di emergenza

ACN = Aircraft Classification Number

Numero che esprime l'effetto di un dato aeromobile sulla pavimentazione per dato standard di portanza del sottofondo

PCN = Pavement Classification Number

Numero che esprime la capacità portante della pavimentazione per un numero abbastanza elevato di operazioni sulla pista (per pavimentazioni flessibili si assume un numero di operazioni pari a 10.000)

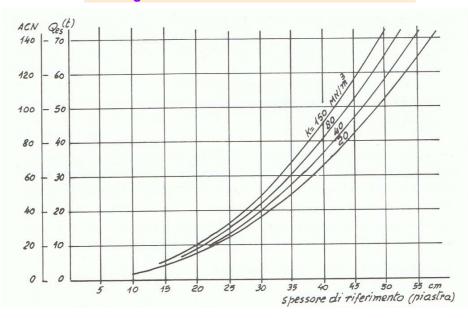
Il metodo definisce bene il modo di determinare il numero ACN mentre definisce dei criteri soltanto per determinare il PCN

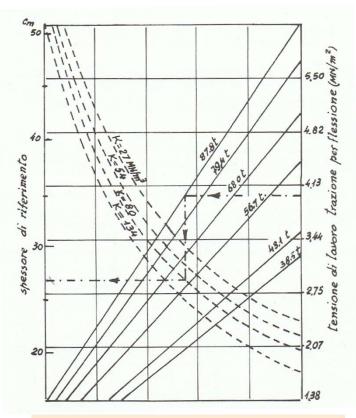
Per dato aeromobile le case costruttrici sono tenute a fornire il valore di ACN per diverse condizioni :

- 1. PAVIMENTAZIONI RIGIDE O FLESSIBILI
- 2. CONDIZIONE DI <u>CARICO MASSIMO AL DECOLLO</u> E <u>CARICO</u> <u>OPERATIVO A</u> VUOTO
- 3. QUATTRO CONDIZIONI DI PORTANZA

```
elevata portanza K = 150MN/m^3 (K>120 MN/m³) o CBR = 15 (CBR>13) media portanza K = 80MN/m^3 (60<K<120 MN/m³) o CBR = 10 (8<CBR<13) bassa portanza K = 40MN/m^3 (25<K<60 MN/m³) o CBR = 6 (4<CBR<8) scarsa portanza K = 20MN/m^3 (K<25 MN/m³) o CBR = 3 (CBR<4)
```

- 4. TENSIONE DI LAVORO CALCESTRUZZO σ_t = 27,5 Kg/cm²
- 5. PRESSIONE DI GONFIAGGIO 1,25 MPa

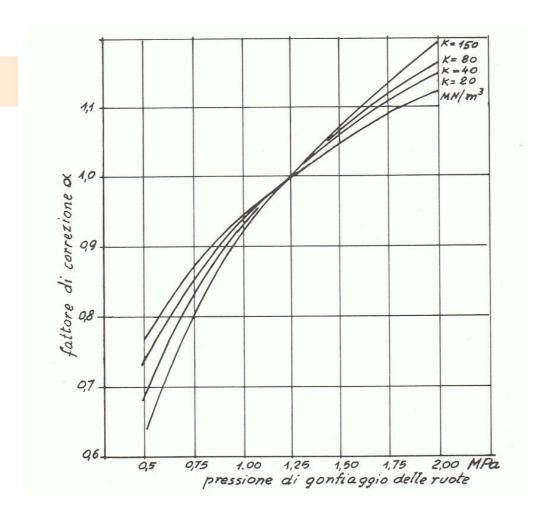

Con i dati di cui sopra è possibile impostare un calcolo matematico che definisce il carico di un dato aereo agente su ruota singola in base alla portanza del sottofondo individuata dalle quattro categorie proposte.

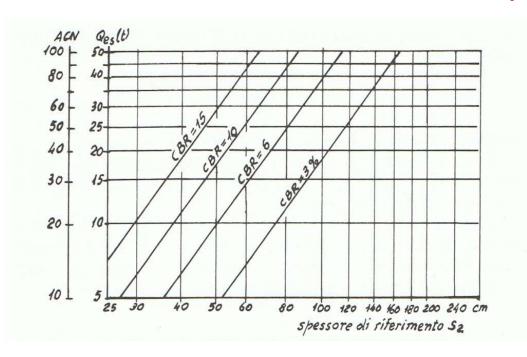

Il carico su ruota singola equivalente, con tale procedimento, non è riferito all'effettivo spessore della sovrastruttura, ma ad uno spessore di riferimento, definito in base al tipo di aereo (disposizione del carrello e delle ruote nella gamba di forza), al carico ed alla posizione del baricentro di massa.

Il valore di ACN è stabilito numericamente dal doppio del carico su ruota singola equivalente espresso in tonnellate.

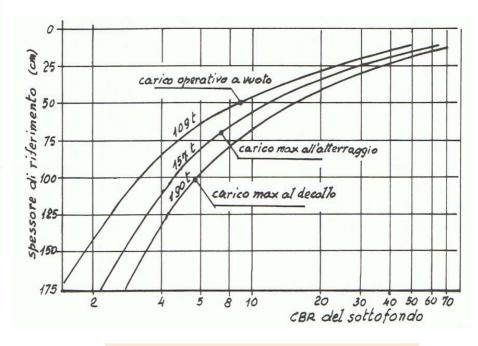
Determinazione dell' ACN per pavimentazioni rigide

Determinazione dell' ACN in funzione dello spessore di riferimento s₁ della piastra rigida e del modulo K del sottofondo




Determinazione di s₁ per l' aereo B727-200 in funzione di K (modulo di reazione del sottofondo) e del carico dell'aereo

Determinazione dell' ACN per pavimentazioni rigide


Fattore correttivo del numero ACN per pressione di gonfiaggio diversa da quella standard di 1,25 MPa

Determinazione dell' ACN per pavimentazioni flessibili

Determinazione dell' ACN in funzione dello spessore di riferimento s₂ e dell' indice CBR

Determinazione di s₂ per l' aereo DC 10-10 in funzione del CBR del sottofondo e del carico dell' aereo

Valori dell' ACN di alcuni aerei

						3	VALOR	I ACN	Į .		
	Carico massimo al decollo Carico operat. a vuoto (t)	% di carico su una gamba di forza	Pressione di gonfiaggio (MPa)	Sovi	astrut	ture ri	gide	Sovrastrutture flessibili			
Tipo di aereo				Mod	ulo K	in MN	V/m³	Indice CBR			
		o% on ns		150	80	40	20	15	10	6	3
Airbus A 300 modello 84	157,000 87,326	46,5	1,41	44 20	52 23	61 27	69 32	46 22	51 23	62 27	79 35
B 727-200 standard	78,471 44,293	46,2	1,15	45 23	48 24	50 26	53 27	40 20	42 21	48 23	53 27
B 727-200 modificato	84,277 44,270	46,7	1,02	43 22	51 24	54 - 26	57 27	44 20	46 21	53 24	58 28
B 727 modificato	86,636 44,347	46,6	1,02	50 22	53 24	56 25	58 27	46 20	48 21	55 23	60 28
В 737-200	52,616 27,293	45,5	0,63	24 11	26 12	29 13	31 14	24 10	26 11	29 13	34 15
В 747-100	323,410 162,385	23,4	1,50	41 18	48 19	57 22	65 26	44 19	48 20	58 22	78 28
B 747-100 B	334,749 173,036	23,4	1,56	43 19	50 21	59 24	68 28	46 20	50 21	60 24	80
В 747-100 В	341,553 174,870	23,4	1,32	42 18	49 20	59 23	68 27	46 20	51 21	62 23	82 30
В 747-200 С	373,505 166,749	23,4	1,30	47 17	55 19	66 22	76 26	52 19	58 20	71 22	92
В 767-200	141,520 80,800	46,9	1,26	33 17	38 19	46 22	53 25	37 19	40 20	48 22	66
DC 8-62	160,121 65,025	46,5	1,29	47 15	56 16	65 19	73 22	49 16	56 16	67 18	83
DC 9-81	63,958 42,638	47,3	1,17	41 25	43 27	45 28	46 29	36 22	38 23	42 26	25
DC 9-82	67,133 44,755	47,65	1,24	44 27	46 28	48 30	49 31	38 23	41 24	45 27	3
DC 10-10	190,406 108,940	47,15	1,28	45 23	52 25	63 28	73 33	52 26	57 27	68 30	9:
DC 10-40	253,105 122,567	37,7	1,17	44 20	53 21	64 24	75 28	53 22	59 23	70 26	9
L 1011-1	195,952 108,962	47,4	1,33	45 24	52 25	62 28	73 33	52 25	56 27	66 29	9
L1011-100/200	212,281 110,986	46,8	1,21	46 23	55 24	66 28	78 32	56 25	61 26	73 30	10

CRITERI DI VALUTAZIONE DEL PCN:

METODO ANALITICO: si risale alla portanza della sovrastruttura sulla base degli elaborati grafici di progetto e delle indagini di supporto alla progettazione

VALUTAZIONE TECNICA: basata su indagini dirette (misure deflettometriche FWD, carotaggi)

VALUTAZIONE BASATA SULL' ESPERIENZA: si considera l'aereo che più comunemente agisce sull'aeroporto e si assume come PCN l'ACN di tale aereo valutato con riferimento a valori di K o CBR desunti da prove dirette.

Le norme ICAO prescrivono l'uso di particolari lettere-codici per la facilitazione di tutti gli elementi riguardanti la sovrastruttura.

Tipo di sovrastruttura		Metodo di valutazione					
Rigida	R	Tecnico	Т				
Flessibile	F	Diretto	U				
Portanza del sottofondo Elevata	Α	Pressione di gonfiaggio Elevata	W				
Media Bassa	B C	Media Bassa	X				
Scarsa	Ď	Molto bassa	Ż				

PCN = 75/F/B/X/U

CRITERI DI UTILIZZAZIONE

Pavimentazione flessibile

Effetti nocivi trascurabili per movimenti occasionali di aeromobili con ACN non superiore al 10% del numero PCN della pista.

Pavimentazione rigida

Effetti nocivi trascurabili per movimenti occasionali di aeromobili con ACN non superiore al 5% del numero PCN della pista.

Se non si conosce la struttura della pavimentazione, si applicherà sempre una limitazione del 5% finché il numero di movimenti degli aerei con ACN > 1,05 PCN non superi il 5% dei movimenti annui previsti.